Predictions for two-pion correlations for sqrt(s)=14 TeV proton-proton collisions

Tom Humanic
Ohio State University

Outline of the talk

- Introduction
- Simple geometric model to give "baseline" predictions for HBT from pp@LHC
- Reality check of model by comparing with Tevatron HBT experiment
- Results of model calculations for sqrt(s)=14 TeV
- Summary

(work to appear in Phys. Rev. C, or see nucl-th/0612098v2)

CERN Large Hadron Collider (LHC)

- * Located in Switzerland and France 27 km circumference ring
- * Maximum C. M. energies and luminosities of colliding beams:

```
proton + proton: 14 TeV @ 10<sup>34</sup> collisions/(sec*cm<sup>2</sup>)
```

lead + lead: 5.5 ATeV @ 10²⁷ collisions/(sec*cm²)

- * First p-p beam for physics expected by Summer, 2008 First Pb-Pb beam by ~ end of 2009 (we hope!)
 - better have some interesting p-p physics to do while waiting for Pb-Pb: e.g. HBT, mini-BH,
- * Will be the highest energy particle accelerator in the world! (Tevatron presently running at Fermilab has a maximum C.M. energy for p-p of 2 TeV)

What do we expect to see from pion HBT with p+p @ LHC?

Jet model for HBT with p+p @ FNAL/LHC Guy Paic and Piotr Skowronski J. Phys. G: Nucl. Part.. Phys. 31 (2005) Pion HBT with p+p @ STAR Zbigniew Chajecki QM05

Finds R increases as dN/dy increases, as seen In FNAL data

Goals of the present work

- Use a very simple model to make "baseline predictions" for pion HBT in pp@LHC --> differences between these predictions and LHC data could point to the presence of new physics
- Calculate the 1-d invariant two-pion correlation function $C(Q_{inv})$, where $Q_{inv} = |p_1-p_2|$ and p_1 and p_2 are pions 4-momenta, to make the predictions simpler to compare with data
- Include final-state hadronic rescattering effects since large hadronic multiplicites (e.g. > 300) are possible at the LHC -- concentrate on events with high multiplicity to enhance this effect
- Do a reality check of the model by comparing results with a Tevatron HBT experiment (Experiment E735) --> if the model fails miserably here already, it's time for the junk pile!

Simple geometric model for HBT from p+p

* Assume all particles have the same proper time for hadronization, τ , so that the hadronization space-time for each particle is given by "causality", i.e.

$$t_i = \tau E_i/m_i$$
; $x_i = x_{oi} + \tau p_{xi}/p_i$; $y_i = y_{oi} + \tau p_{yi}/p_i$; $z_i = \tau p_{zi}/p_i$ (similar to Csorgo and Zimanyi, Nucl. Phys. A512 (1990) applied to e+-e-)

* Take into account hadronic rescattering using a full Monte Carlo rescattering calculation

Other details of the model....

- Use PYTHIA v.6326 to generate hadrons for 1.8 TeV p-pbar or 14 TeV p+p "minimum bias" events
 - "final" hadrons from PYTHIA to use: $\rightarrow \pi, K, N, \Delta, \Lambda, \omega, \rho, \phi, \eta, \eta$ "
- Monte Carlo hadronic rescattering calculation:
 Let hadrons undergo strong binary collisions until the system gets so dilute (since it is expanding) that all collisions cease.
 --> σ(i,j) from Prakash, etc..
 - Record the time, mass, position, and momentum of each hadron when it no longer scatters.

 freezout condition.
- Calculate $C(Q_{inv}) \sim N_{real}(Q_{inv})/N_{back}(Q_{inv})$ by binning symmetrized pairs of pions assuming plane waves in N_{real} to put in HBT correlations (usual method).
- Fit Gaussian (Tevatron) or more general function (LHC) to $C(Q_{inv})$ to extract parameters R and λ , or R, λ , B, and α :
 - $C(Q_{inv}) = 1 + \lambda \exp(-R^2Q_{inv}^2)$ or $C(Q_{inv}) = 1 + \lambda \cos(BQ_{inv}^2) \exp(-R^\alpha Q_{inv}^\alpha)$
- Carry out calcuations for several τ values to see effect on HBT -- expect the smaller values of τ to have the largest rescattering effects

How long does it take to collect a "reasonable" data sample of, for example, $\pi^-\pi^-$ pairs for events with total mult>300 in a detector at the LHC?

Assumptions:

- * reasonable data sample of $\pi^-\pi^-$ pairs for HBT: ~106
- * detector: ALICE ITS+TPC (~accept. 0.1<pT, -1<y<1; DAQ rate 100Hz)
- * 1st-year LHC p-p luminosity @ 14 TeV: L~1030 cm-2 s-1
- * ~40% of charged particles reconstructed in an event are π -'s
- From PYTHIA p-p minimum bias run @ 14 TeV
 - * $\sigma_{\text{total}} \sim 50 \text{ mb}$, $\sigma(\text{m}>300) = 0.1 \ \sigma_{\text{total}} \sim 5 \text{ mb}$
 - * charged hadron multiplicity in ALICE acceptance for m>300: ~ 50/event
- Result:
 - * events/sec= L σ (m>300) ~ 5000 > DAQ rate --> 100 events/sec
 - * $\pi^{-}\pi^{-}$ pairs obtained per event ~ $(0.4*50)^{2}/2 = 200 --> 20,000$ pairs/sec
 - --> running time to obtain 10⁶ pairs = 10⁶/20,000 = 50 seconds ~ 1 minute

Compare model predictions with Tevatron data as a reality check on the model

- Compare with Experiment E735 which extracted ππ HBT
 @ sqrt(s)=1.8 TeV in p-pbar collisions using a
 spectrometer (T. Alexopoulos et al., Phys. Rev.
 D48,1931(1993))
- Make kinematic cuts on p_T and rapidity to simulate experimental acceptance in the model
- Fit the Gaussian function to $C(Q_{inv})$ to extract R an λ from the model since this was the procedure used in the experiment
- Compare model calculations with τ =0.1, 0.5 and 1.0 fm/c to experiment to see if the data favor one of them over the others

η and p_T distributions from PYTHIA for p-pbar @ 1.8 TeV for 1) direct, 2) with "y-p_T hole", 3) hole+rescatt. (τ =0.1 fm/c)

Sample model 2- π correlation functions for τ =0.1, 0.5, 1.0 fm/c for 1.8 TeV p-pbar

Comparisons of Gaussian fit paramters between E735 and model for τ =0.1 fm/c

Comparisons of Gaussian fit paramters between E735 and model for τ =0.5 fm/c

Comparisons of Gaussian fit paramters between E735 and model for τ =1.0 fm/c

Summary of results for model comparison with Tevatron experiment

- Model best describes the the p_T and multiplicity dependences of the E735 Gaussian HBT parameters for the case of τ =0.1 fm/c with rescattering turned on
- Suggests that hadronization time short in these collisions, i.e. τ <<1 fm/c, and that significant hadronic rescattering effects are present

Model predictions for LHC p-p collisions at 14 TeV

- Make predictions for τ =0.1 and 0.5 fm/c cases
- Employ same "y-p_T hole" method as used for Tevatron calculations
- Fit more general function to $C(Q_{inv})$: (see Csorgo and Zimanyi) $C(Q_{inv}) = 1 + \lambda \cos(BQ_{inv}^2) \exp(-R^\alpha Q_{inv}^\alpha)$ where,
 - R = "size" parameter
 - λ = "strength" parameter
 - B = "oscillatory" parameter, B ~ τ for present model, normally not observed for cases where R>> τ since exp term dominates and quickly damps oscillations
 - α = "degree of function fall-off" parameter

η and p_T distributions from PYTHIA for p-p @ 14 TeV for 1) direct and 2) hole+rescatt. (τ =0.1 fm/c)

Sample model 2- π correlation functions for τ =0.1 fm/c for 14 TeV p-p with fit to general function

Sample model 2- π correlation functions for τ =0.5 fm/c for 14 TeV p-p with fit to general function

General fit function parameters versus p_T and multiplicity for model with τ =0.1 fm/c for 14 TeV p-p

General fit function parameters versus p_T and multiplicity for model with τ =0.5 fm/c for 14 TeV p-p

Summary of general fit parameter behavior predicted by model for 14 TeV p-p

- R -- largest variation for τ =0.1 fm/c case, can increase by 3x for increasing m and decrease by 3x for increasing p_T
- λ -- weak dependencies on kinematical cuts which tend to be opposite those of R; λ<0.5 due to presence of longlived resonances
- B -- tends to follow the behavior B $\sim \tau$, since noticeable baseline oscillations are seen for the τ =0.5 fm/c case
- α -- similar kinematical dependencies as λ , tends to have values in range 0.7< α <1.5 for both τ =0.1 and 0.5 fm/c

Summary

- Within the context of this simple model, results from two-pion HBT @ Tevatron and LHC energies strongly depend on the hadronization proper time, τ
- Comparison of the model with Tevatron data looks reasonable and favors a short hadronization time, τ~0.1 fm/c
- Final-state hadronic rescattering effects appear to be observable for τ<0.5 fm/c in high-energy p-p and p-pbar collisions
- Significant dependences of the HBT parameters on particle multiplicity and p_T bin are predicted by the model to be seen for LHC p-p collisions -- these are enhanced for short τ

